PUBLICATIONS:

Submitted:

1. Observation of quantum depletion in a nonequilibrium exciton-polariton condensate, Maciej Pieczarka, Eliezer Estrecho, Maryam Boozarjmehr, Mark Steger, Kenneth West, Loren N Pfeiffer, David W Snoke, Andrew G Truscott, Elena A Ostrovskaya, arXiv preprint arXiv:1905.10511

 

2. Natural Oscillations of a Polariton Condensate in a Ring, S Mukherjee, DM Myers, RG Lena, B Ozden, J Beaumariage, Z Sun, M Steger, LN Pfeiffer, K West, AJ Daley, DW Snoke, arXiv preprint arXiv:1901.05608

 

3. Pushing Photons with Electrons: Observation of the Polariton Drag Effect, DM Myers, B Ozden, J Beaumariage, LN Pfeiffer, K West, DW Snoke, arXiv preprint arXiv:1808.07866

 

4. Polariton Supercurrent Generation in Unipolar Electro-optic Devices, Ming XieDavid SnokeA. H. MacDonald, arXiv preprint arXiv:1710.05826

 

5. Spontaneous condensation of exciton-polaritons in the single-shot regime,E Estrecho, T Gao, N Bobrovska, MD Fraser, M Steger, L Pfeiffer, K West, TCH Liew, M Matuszewski, DW Snoke, AG Truscott, EA Ostrovskaya,arXiv preprint arXiv:1705.00469

 

6. The connection of polaritons and vacuum Rabi splitting, David Snoke, arXiv preprint arXiv:1509.01468

 

7. A Macroscopic Classical System with Entanglement, David Snoke, arXiv preprint arXiv:1406.7023

 

2019:

1. Effect of optically induced potential on the energy of trapped exciton-polaritons below the condensation threshold, M. Pieczarka, M. Boozarjmehr, E. Estrecho, Y. Yoon, M. Steger, K. West, L. N. Pfeiffer, K. A. Nelson, D. W. Snoke, A. G. Truscott, and E. A. Ostrovskaya, Physical Review B https://journals.aps.org/prb/accepted/80072K26I0f1550622b09be82044477a1d982ca06

 

2. Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation, E Estrecho, T Gao, N Bobrovska, D Comber-Todd, MD Fraser, M Steger, K West, LN Pfeiffer, J Levinsen, MM Parish, TCH Liew, M Matuszewski, DW Snoke, AG Truscott, EA Ostrovskaya, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.100.035306

 

3. Optical switching with organics, Z Sun, DW Snoke, Nature Photonics DOI: https://doi.org/10.1038/s41566-019-0445-z

 

4. Stress-induced bandgap renormalization in atomic crystals, Zheng Sun, Jonathan Beaumariage, Hema CP Movva, Sayema Chowdhury, Anupam Roy, Sanjay K Banerjee, David W Snoke, Solid State Communications DOI: https://doi.org/10.1016/j.ssc.2018.11.006

 

2018:

1. Polariton-enhanced exciton transport, DM Myers, S Mukherjee, J Beaumariage, DW Snoke, Mark Steger, LN Pfeiffer, K West, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.98.235302

 

2. Single-shot condensation of exciton-polaritons and the hole burning effect, E Estrecho, Tingge Gao, Nataliya Bobrovska, Michael D Fraser, M Steger, L Pfeiffer, K West, Timothy Chi Hin Liew, Michal Matuszewski, David W Snoke, AG Truscott, EA Ostrovskaya, Nature Communications DOI: https://doi.org/10.1038/s41467-018-05349-4

 

3. Superlinear increase of photocurrent due to stimulated scattering into a polariton condensate, DM Myers, B Ozden, M Steger, E Sedov, A Kavokin, K West, LN Pfeiffer, DW Snoke, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.98.045301

 

4. Multiple-photon excitation of nitrogen-vacancy centers in diamondPeng Ji, R Balili, Jonathan Beaumariage, Shouvik Mukherjee, D Snoke, MV Gurudev Dutt, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.97.134112

 

5. Chiral modes at exceptional points in exciton-polariton quantum fluids, T Gao, Guangyao Li, E Estrecho, Timothy Chi Hin Liew, D Comber-Todd, A Nalitov, M Steger, K West, L Pfeiffer, DW Snoke, AV Kavokin, AG Truscott, EA Ostrovskaya, Physical Review Letters DOI: https://doi.org/10.1103/PhysRevLett.120.065301

 

6. Ultrafast control of strong light-matter coupling, Christoph Lange, Emiliano Cancellieri, Dmitry Panna, David M Whittaker, Mark Steger, David W Snoke, Loren N Pfeiffer, Kenneth W West, Alex Hayat, New Journal of Physics DOI: https://doi.org/10.1088/1367-2630/aa9fd0

 

7. Stable switching among high-order modes in polariton condensates, Yongbao Sun, Yoseob Yoon, Saeed Khan, Li Ge, Mark Steger, Loren N Pfeiffer, Ken West, Hakan E Türeci, David W Snoke, Keith A Nelson, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.97.045303

 

2017:

1. The new era of polariton condensates, David W Snoke, Jonathan Keeling, Physics Today DOI: 10.1063/PT.3.3729

 

2. Direct measurement of polariton–polariton interaction strength, Yongbao Sun, Yoseob Yoon, Mark Steger, Gangqiang LiuLoren N. Pfeiffer, Ken West, David W. Snoke Keith A. Nelson, Nature Physics DOI: https://doi.org/10.1038/nphys4148

 

3. Edge trapping of exciton-polariton condensates in etched pillars, D. M. MyersJ. K. WuenschellB. OzdenJ. BeaumariageD. W. SnokeL. Pfeiffer, and K. West, Applied Physics Letters DOI: https://doi.org/10.1063/1.4983832

 

4. Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium, Yongbao Sun, Patrick Wen, Yoseob Yoon, Gangqiang Liu, Mark Steger, Loren N. Pfeiffer, Ken West, David W. Snoke, and Keith A. Nelson, Physical Review Letters 

DOI: https://doi.org/10.1103/PhysRevLett.118.149901

 

5. Ultra-low threshold polariton condensation, Mark Steger, Brian Fluegel, Kirstin Alberi, David W Snoke, Loren N Pfeiffer, Ken West, Angelo Mascarenhas, Optics Letters DOI: https://doi.org/10.1364/OL.42.001165

 

6. Time-resolved two-photon excitation of long-lifetime polaritons, Chitra Gautham, Mark Steger, David Snoke, Ken West, Loren Pfeiffer, Optica DOI: https://doi.org/10.1364/OPTICA.4.000118

 

2015:

1. Darkening of inter-well excitons in coupled quantum wells due to a stress-induced direct-to-indirect transition, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.92.235415

 

2. Suboptimality and complexity in evolution, David W Snoke, Jeffrey Cox, Donald Petcher, Complexity DOI: https://doi.org/10.1002/cplx.21566

 

3. Half-quantum circulation and optical spin Hall effect in a polariton spinor ring condensate, G Liu, D Snoke, A Daley, L Pfeiffer, K West, Proceedings of the National Academy of Sciences DOI: https://doi.org/10.1073/pnas.1424549112

 

2014:

1. Enhanced coherence between condensates formed resonantly at different times, Alex Hayat, Christoph Lange, Lee A Rozema, Rockson Chang, Shreyas Potnis, Henry M van Driel, Aephraim M Steinberg, Mark Steger, David W Snoke, Loren N Pfeiffer, Kenneth W West, Optics Express DOI: https://doi.org/10.1364/OE.22.030559

 

2. Bose-Einstein condensation of excitons in Cu2O: progress over 30 years, D Snoke, GM Kavoulakis, Reports on Progress in Physics DOI:10.1088/0034-4885/77/11/116501

 

3. Systems Biology as a Research Program for Intelligent Design, David Snoke, BIO-Complexity DOI: 10.5048/BIO-C.2014.3.c

 

4. Time-resolved two-photon excitation of dark states in quantum dots, C Gautham, DW Snoke, A Rastelli, OG Schmidt, Applied Physics Letters DOI: https://doi.org/10.1063/1.4871379

 

8. Macroscopic coherence between quantum condensates formed at different times, Alex Hayat, Christoph Lange, Lee A Rozema, Rockson Chang, Shreyas Potnis, Henry M van Driel, Aephraim M Steinberg, Mark Steger, David W Snoke, Loren N Pfeiffer, Kenneth W West, Optics Express, DOI: https://doi.org/10.1364/OE.22.030559

 

2013:

1. Enhanced coherence between condensates formed resonantly at different times, Alex Hayat, Christoph Lange, Lee A Rozema, Rockson Chang, Shreyas Potnis, Henry M van Driel, Aephraim M Steinberg, Mark Steger, David W Snoke, Loren N Pfeiffer, Kenneth W West, Optics Express DOI: https://doi.org/10.1364/OE.22.030559

 

2. Long-range ballistic motion and coherent flow of long-lifetime polaritons, Mark Steger, Gangqiang Liu, Bryan Nelsen, Chitra Gautham, David W Snoke, Ryan Balili, Loren Pfeiffer, Ken West, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.88.235314

 

3. Dissipationless flow and sharp threshold of a polariton condensate with long lifetime, B Nelsen, G Liu, M Steger, DW Snoke, R Balili, K West, L Pfeiffer, Physical Review X DOI: https://doi.org/10.1103/PhysRevX.3.041015

 

4. Microcavity polaritons: A new type of light switch, David Snoke, Nature Nanotechnology DOI: https://doi.org/10.1038/nnano.2013.107

 

5. Dynamics of phase coherence onset in Bose condensates of photons by incoherent phonon emission, DW Snoke, SM Girvin, Journal of Low- Temperature Physics DOI: https://doi.org/10.1007/s10909-012-0854-6

 

6. True, quasi and unstable Nambu–Goldstone modes of the two-dimensional Bose-Einstein condensed magnetoexcitons, SA Moskalenko, MA Liberman, DW Snoke, EV Dumanov, SS Rusu, F Cerbu, Solid State Communications DOI: https://doi.org/10.1016/j.ssc.2012.11.006

 

7. Dipole Excitons in Coupled QuantumWells: Towards an Equilibrium Exciton Condensate, David Snoke, Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics https://doi.org/10.1142/9781848168121_0028

 

2012:

1. Transport and quantum statistics of excitons in Cu2O, DP Trauernicht, A Mysyrowicz, D Snoke, Laser Optics of Condensed Matter DOI: https://doi.org/10.1007/978-1-4615-7341-8_43

 

2. Nambu-Goldstone modes of the two-dimensional Bose-Einstein condensed magnetoexcitons, SA Moskalenko, MA Liberman, DW Snoke, EV Dumanov, SS Rusu, F Cerbu, The European Physical Journal B DOI: 10.1140/epjb/e2012-30406-6

 

3. Single-wavelength, all-optical switching based on exciton-polaritons, M Steger, C Gautham, B Nelsen, D Snoke, L Pfeiffer, K West, Applied Physics Letters DOI: https://doi.org/10.1063/1.4754575

 

4. Towards the transverse mode-locking of oxide-confined VCSELs, Botao Zhang, David W Snoke, Albert P Heberle, Optics Communications DOI: https://doi.org/10.1016/j.optcom.2012.06.042

 

5. Dynamic Stark effect in strongly coupled microcavity exciton-polaritons, Alex Hayat, Christoph Lange, Lee A Rozema, Ardavan Darabi, Henry M van Driel, Aephraim M Steinberg, Bryan Nelsen, David W Snoke, Loren N Pfeiffer, Kenneth W West, Physical Review Letters DOI: https://doi.org/10.1103/PhysRevLett.109.033605

 

6. The basis of the second law of thermodynamics in quantum field theory, DW Snoke, G Liu, SM Girvin, Annals of Physics DOI: https://doi.org/10.1016/j.aop.2011.12.016

 

7. Noncircular Refractive Index Profile and Breakdown of Mode Degeneracy of Vertical Cavity Surface Emitting Lasers, M Li, B Zhang, KP Chen, DW Snoke, AP Heberle, IEEE Journal of Quantum Electronics DOI: 10.1109/JQE.2012.2201697

 

8. Trion formation in GaAs–AlGaAs quantum dots by tunneling, B Zhang, DW Snoke, AP Heberle, Solid State Communications DOI: https://doi.org/10.1016/j.ssc.2011.11.025

 

9. Polariton Condensation and Lasing, David Snoke, Exciton Polaritons in Microcavities DOI: https://doi.org/10.1007/978-3-642-24186-4_12

 

2011:

1. Strain-induced darkening of trapped excitons in coupled quantum wells at low temperature, NW Sinclair, JK Wuenschell, Z Vörös, B Nelsen, DW Snoke, Marzena H Szymanska, Alex Chin, Jonathan Keeling, LN Pfeiffer, KW West, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.83.245304

 

2. Ultrafast switching dynamics of non-lasing modes of vertical-cavity surface-emitting lasers, B Zhang, DW Snoke, AP Heberle, Optics Communications DOI: https://doi.org/10.1016/j.optcom.2011.02.003

 

3. Exciton pattern generation in GaAs/Al x Ga 1− x As multiple quantum wells, B Fluegel, K Alberi, L Bhusal, A Mascarenhas, DW Snoke, G Karunasiri, LN Pfeiffer, K West, Physical Review B DOI:https://doi.org/10.1103/PhysRevB.83.195320

 

4. Spatial condensation of trapped polaritons in graphene and semiconductor structures, Oleg L Berman, Roman Ya Kezerashvili, Yurii E Lozovik, David W Snoke, R Balili, B Nelsen, L Pfeiffer, K West, Superlattices and Microstructures DOI: https://doi.org/10.1016/j.spmi.2010.04.012

 

5. The quantum Boltzmann equation in semiconductor physics, David Snoke, Annalen der Physik DoI: https://doi.org/10.1002/andp.201000102

 

6. Coherence and optical emission from bilayer exciton condensates, David Snoke, Advances in Condensed Matter Physics DOI: http://dx.doi.org/10.1155/2011/938609

 

2010:

1. Bose-Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity, OL Berman, RY Kezerashvili, YE Lozovik, DW Snoke, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences DOI: https://doi.org/10.1098/rsta.2010.0208

 

2. Numerical simulations of the polariton kinetic energy distribution in GaAs quantum-well microcavity structures, VE Hartwell, DW Snoke, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.82.075307

 

3. Huge splitting of polariton states in microcavities under stress, R Balili, B Nelsen, DW Snoke, RH Reid, L Pfeiffer, K West, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.81.125311

 

4. Polariton condensates, D Snoke, P Littlewood, Physics Today DOI: http://dx.doi.org/10.1063/1.3480075

 

2009:

1. Direct measurement of exciton-exciton interaction energy, Z Vörös, DW Snoke, L Pfeiffer, K West, Physical Review Letter DOI: https://doi.org/10.1103/PhysRevLett.103.016403

 

2. Lasing and polariton condensation: two distinct transitions in GaAs microcavities with stress traps, B Nelsen, R Balili, DW Snoke, L Pfeiffer, K West, Journal of Applied Physics DOI: https://doi.org/10.1063/1.3140822

 

3. Role of the stress trap in the polariton quasi-equilibrium condensation in GaAs microcavities, R Balili, B Nelsen, DW Snoke, L Pfeiffer, K West, Physical Review B DOI:https://doi.org/10.1103/PhysRevB.79.075319

 

2008:

1. Stability of a Bose-Einstein condensate revisited for composite bosons, M Combescot, DW Snoke, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.78.144303

 

2. Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition-rate ultrafast laser, B McMillen, KP Chen, H An, S Fleming, V Hartwell, D Snoke, Applied Physics Letters  DOI: https://doi.org/10.1063/1.2980437

 

3. Polariton condensates: A feature rather than a bug, David Snoke, Nature Physics DOI: https://doi.org/10.1038/nphys1064

 

4. Thermal poling induced second-order nonlinearity in femtosecond-laser-modified fused silica, H An, S Fleming, BW McMillen, KP Chen, D Snoke, Applied Physics Letters DOI: https://doi.org/10.1063/1.2973149

 

5. Quantum well excitons at low density, Z Vörös, DW Snoke, Modern physics letters B DOI: https://doi.org/10.1142/S0217984908015292

 

6. Theory of Bose-Einstein condensation and superfluidity of two-dimensional polaritons in an in-plane harmonic potential, OL Berman, YE Lozovik, DW Snoke, Physical Review B DOI:https://doi.org/10.1103/PhysRevB.77.155317

 

7. Predicting the ionization threshold for carriers in excited semiconductors, David Snoke, Solid State Communications DOI: https://doi.org/10.1016/j.ssc.2008.01.012

 

 

2007:

1. Plasmonic all-optical tunable wavelength shifter, B Fluegel, A Mascarenhas, DW Snoke, LN Pfeiffer, K West, Nature Photonics DOI: https://doi.org/10.1038/nphoton.2007.229

 

2. Hotter condensates, R Balili, D Snoke, Physics World https://iopscience-iop-org.pitt.idm.oclc.org/article/10.1088/2058-7058/20/9/33/pdf

 

3. Superfluidity of ‘dirty’ indirect magnetoexcitons in coupled quantum wells in high magnetic field, OL Berman, YE Lozovik, DW Snoke, RD Coalson, Journal of Physics: Condensed Matter DoI:10.1088/0953-8984/19/38/386219

 

4. Bose-Einstein condensation of microcavity polaritons in a trap, R Balili, V Hartwell, D Snoke, L Pfeiffer, K West, Science 

DOI: 10.1126/science.1140990

 

5. Are we there yet? Progress in condensation of quasiparticles, D Snoke, A Kavokin, Solid State Communications DOI: 10.1016/j.ssc.2007.08.009

 

2006:

1. Evaporative cooling and condensation of two‐dimensional polaritons in an in‐plane harmonic potential, OL Berman, YE Lozovik, DW Snoke, Physica status solid DOI: https://doi.org/10.1002/pssc.200672107

 

2. Temperature dependence of exciton Auger decay process in cuprous oxide, Y Liu, D Snoke, Solid State Communications DOI: https://doi.org/10.1016/j.ssc.2006.06.037

 

3. Condensed-matter physics: coherent questions, David Snoke, Nature DOI: https://doi.org/10.1038/443403a

 

4. Phase transitions of indirect excitons in coupled quantum wells: The role of disorder, OL Berman, YE Lozovik, DW Snoke, RD Coalson, Physica E: Low-dimensional Systems and Nanostructures DOI: https://doi.org/10.1016/j.physe.2006.03.128

 

5. Equilibration of two‐dimensional excitons in an in‐plane harmonic potential, Z Vörös, DW Snoke, L Pfeiffer, K West Physica Status Solidi c DOI: https://doi.org/10.1002/pssc.200668039

 

6. Artificial trapping of a stable high-density dipolar exciton fluid, Gang Chen, Ronen Rapaport, LN Pfeiffer, K West, PM Platzman, Steven Simon, Z Vörös, D Snoke, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.74.045309 

 

7. Trapping excitons in a two-dimensional in-plane harmonic potential: experimental evidence for equilibration of indirect excitons, Z Vörös, DW Snoke, L Pfeiffer, K West, Physical  Review Letters DOI: https://doi.org/10.1103/PhysRevLett.97.016803

 

8. Superfluidity of dirty indirect excitons and magnetoexcitons in a two-dimensional trap, OL Berman, YE Lozovik, DW Snoke, RD Coalson, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.73.235352

 

9. Actively tuned and spatially trapped polaritons, RB Balili, DW Snoke, L Pfeiffer, K West, Applied Physics Letters DOI: https://doi.org/10.1063/1.2164431

 

10. Excitonic circuits: New tools for manipulating photons. David Snoke, Photonics Science https://www.photonics.com/Articles/Excitonic_Circuits_New_Tools_for_Manipulating/a23970

 

2005:

1. A response to Michael Lynch, MJ Behe, DW Snoke, Protein Science https://doi.org/10.1110/ps.051674105

 

2. Long-distance diffusion of excitons in double quantum well structures Z Vörös, R Balili, DW Snoke, L Pfeiffer, K West, Physical Review Letters DOI:https://doi.org/10.1103/PhysRevLett.94.226401

 

3. Spontaneous coherence in excitonic systems-A special issue of solid-state communications-Preface, D Snoke, C Tejedor, Solid State Communications 

 

4. Superfluidity of ‘dirty’ indirect excitons in coupled quantum wells, OL Berman, YE Lozovik, DW Snoke, RD Coalson, Solid State Communications DOI: https://doi.org/10.1016/j.ssc.2004.10.038

 

5. Resonant two-photon excitation of 1s paraexcitons in cuprous oxide, Y Liu, D Snoke, Solid State Communications DOI: https://doi.org/10.1016/j.ssc.2005.01.027

 

6. Coexistence of two Bose-Einstein condensates of two-dimensional magnetoexcitons. Exciton-plasmon collective elementary excitations, SA Moskalenko, MA Liberman, VV Boţan, DW Snoke, Solid State Communications 

DOI: https://doi.org/10.1016/j.ssc.2004.09.065

 

7. Luminescence ring formation in quantum wells—a model with Coulomb interaction, S Denev, SH Simon, DW Snoke, Solid State Communications DOI: https://doi.org/10.1016/j.ssc.2004.10.039

 

8. Trapping long-lifetime excitons in a two-dimensional harmonic potential, DW Snoke, Y Liu, Z Vörös, L Pfeiffer, K West, Solid State Communications DOI: https://doi.org/10.1016/j.ssc.2004.11.053

 

2004:

1. Collective properties of indirect excitons in coupled quantum wells in a random field, OL Berman, YE Lozovik, DW Snoke, RD Coalson, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.70.235310

 

2. Simulating evolution by gene duplication of protein features that require multiple amino acid residues, MJ Behe, DW Snoke, Protein Science DOI: https://doi.org/10.1110/ps.04802904

 

3. Spin flip from dark to bright states in InP quantum dots, DW Snoke, J Hübner, WW Rühle, M Zundel, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.70.115329

 

4. Moving beyond a simple model of luminescence rings in quantum well structures, D Snoke, S Denev, Y Liu, S Simon, R Rapaport, G Chen, L Pfeiffer, K West, Journal of Physics: Condensed Matter DOI:10.1088/0953-8984/16/35/004

 

5. Bose-Einstein condensation of magnetoexcitons in ideal two-dimensional system in a strong magnetic field, VV Boţan, MA Liberman, SA Moskalenko, DW Snoke, Börje Johansson, Physica B: Condensed Matter DOI: https://doi.org/10.1016/j.physb.2004.01.127

 

6. Charge separation of dense two-dimensional electron-hole gases: Mechanism for exciton ring pattern formation, R Rapaport, Gang Chen, D Snoke, Steven H Simon, Loren Pfeiffer, Ken West, Y Liu, S Denev, Physical Review Letters DOI:https://doi.org/10.1103/PhysRevLett.92.117405

 

7. Mechanism of exciton emission ring pattern in doped quantum wells, R Rapaport, Gang Chen, D Snoke, Steven H Simon, Loren Pfeiffer, Ken West, Y Liu, S Denev, Physica Status Solidi (a) DOI:  https://doi.org/10.1002/pssa.200304072 

 

2003:

1. Polariton lasing vs. photon lasing in a semiconductor microcavity, H Deng, G Weihs, D Snoke, J Bloch, Y Yamamoto, Proceedings of the National Academy of Sciences DOI: https://doi.org/10.1073/pnas.2634328100

 

2. Bose-Einstein condensation of excitons in ideal two-dimensional system in a strong magnetic field, SA Moskalenko, MA Liberman, DW Snoke, VV Boţan, B Johansson, Physica E: Low-dimensional Systems and Nanostructures DOI: https://doi.org/10.1016/S1386-9477(03)00229-7

 

3. When should we say we have observed Bose condensation of excitons? David Snoke, Physica Status Solidi (b) DOI: https://doi.org/10.1002/pssb.200303151

 

4. Luminescence rings in quantum well structures, D Snoke, Y Liu, S Denev, L Pfeiffer, K West, Solid State Communications DOI: https://doi.org/10.1016/S0038-1098(03)00316-8

 

5. Bose-Einstein condensation of excitons in ideal 2D system in a strong magnetic field, SA Moskalenko, MA Liberman, DW Snoke, VV Botsan, B Johansson, Physica E http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A111389&dswid=-3242

 

2002:

1. Polarizability, correlation energy, and dielectric liquid phase of Bose-Einstein condensate of two-dimensional excitons in a strong perpendicular magnetic field, SA Moskalenko, MA Liberman, DW Snoke, VV Boţan, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.66.245316

 

2. Spontaneous Bose coherence of excitons and polaritons, David Snoke, Science DOI: 10.1126/science.1078082

 

3. Optical detection of magnetic fields using giant magnetoresistance in undoped coupled quantum wells, S Denev, V Negoita, DW Snoke, B Laikhtman, K Eberl, L Pfeiffer, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.66.205304

 

4. Bose-Einstein condensation of excitons in ideal 2D system in strong magnetic field, SA Moskalenko, MA Liberman DW Snoke, VV Boţan, Moldavian Journal of the Physical Sciences http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.2826&rep=rep1&type=pdf

 

5. Long-range transport in excitonic dark states in coupled quantum wells, D Snoke, S Denev, Y Liu, L Pfeiffer, K West, Nature 

DOI: https://doi-org.pitt.idm.oclc.org/10.1038/nature00940

 

6. Stress dependence of exciton relaxation processes in Cu2O, S Denev, DW Snoke, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.65.085211

 

7. Harmonic Potential Traps for Excitons in 3d and 2D, DW Snoke, S Denev, V Negoita, L Pfieffer, Laser Spectroscopy DOI: https://doi.org/10.1142/9789812778307_0010

 

2001:

1. Anomalous Spectral Shifts of Indirect Excitons in Coupled GaAs Quantum Wells, DW Snoke, V Negoita, D Hackworth, K Eberl, International Journal of Modern Physics B DOI: https://doi.org/10.1142/S0217979201008251

 

2000:

1. Energy shifts of indirect excitons in coupled quantum wells, DW Snoke, V Negoita, K Eberl, Journal of Luminescence DOI: https://doi.org/10.1016/S0022-2313(99)00251-3

 

2. Subhertz spectral fluctuations from high-density excitons in coupled quantum wells, Optical Letters DOI: https://doi.org/10.1364/OL.25.000572

 

3. Strong red shift of indirect exciton luminescence in low magnetic field, V Negoita, DW Snoke, K Eberl, Solid State Communications DOI: https://doi.org/10.1016/S0038-1098(99)00502-5

 

4. Huge density-dependent blueshift of indirect excitons in biased coupled quantum wells, V Negoita, DW Snoke, K Eberl, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.61.2779

 

5. Pushing the Auger limit: Kinetics of excitons in traps in Cu2O, DW Snoke, V Negoita, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.61.2904

 

1999:

1. Stretching quantum wells: A method for trapping free carriers in GaAs heterostructures, V Negoita, DW Snoke, K Eberl, Applied Physics Letters DOI: https://doi.org/10.1063/1.124915

 

2. Harmonic-potential traps for indirect excitons in coupled quantum wells, V Negoita, DW Snoke, K Eberl, Physical Review B DOI:https://doi.org/10.1103/PhysRevB.60.2661

 

1997:

1. Spin flip of excitons in GaAs quantum wells, DW Snoke, WW Rühle, K Köhler, K Ploog, Physcial Review B

DOI: https://doi.org/10.1103/PhysRevB.55.13789

 

1996:

1. Coherent exciton waves, David Snoke, Science DOI: 10.1126/science.273.5280.1351

 

2. Comparison of bond character in hydrocarbons and fullerenes, DW Snoke, M Cardona, S Sanguinetti, G Benedek, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.53.12641

 

3. Transport analysis of the thermalization and energy relaxation of photoexcited hot electrons in Ge-doped GaAs, P Supancic, U Hohenester, P Kocevar, D Snoke, RM Hannak, WW Rühle, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.53.7785

 

4. Spin-flip Dynamics of Excitons in GaAs Quantum Wells, A Lohner, D Snoke, WW Rühle, K Kühler, Hot Carriers in Semiconductors DOI: https://doi.org/10.1007/978-1-4613-0401-2_4

 

1995:

1. Hysteresis in the Mott transition between plasma and insulating gas, DW Snoke, JD Crawford, Physical Review E

DOI: https://doi.org/10.1103/PhysRevE.52.5796

 

1994: 

1. Density dependence of electron scattering at low density, David Snoke, Physical Review B DOI:https://doi.org/10.1103/PhysRevB.50.11583

 

1993:

1. A bond polarizability model for the C60 Raman spectrum, DW Snoke, M Cardona, Solid State Communications DOI: https://doi.org/10.1016/0038-1098(93)90339-O

 

2. Theory of electron-electron scattering at low density, David Snoke, Physical Review B

DOI: https://doi.org/10.1103/PhysRevB.47.13346

 

3. Optical absorption spectrum of C60 at high pressure, DW Snoke, K Syassen, A Mittelbach, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.47.4146

 

1992:

1. Nonequilibrium electron kinetics in GaAs, D Snoke, W Rühle, E Bauser, Journal of luminescence DOI: https://doi.org/10.1016/0022-2313(92)90188-F

 

2. Vibrational modes, optical excitations, and phase transition of solid C 60 at high pressures, DW Snoke, YS Raptis, K Syassen, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.45.14419

 

3. Phonon-absorption recombination luminescence of room-temperature excitons in Cu2O, DW Snoke, AJ Shields, M Cardona

Physical Review B DOI: https://doi.org/10.1103/PhysRevB.45.11693

 

4. Raman study of C60/C70 under pressure, YS Raptis, DW Snoke, K Syassen, S Roth, P Bernier, A Zahab, International Journal of High Pressure Research, DOI: https://doi.org/10.1080/08957959208245610

 

5. Nonthermalized distribution of electrons on picosecond time scale in GaAs, DW Snoke, WW Rühle, YC Lu, E Bauser, Physical Review letters, DOI: https://doi.org/10.1103/PhysRevLett.68.990

 

1991:

 

1. Evidence for Bose-Einstein condensation of excitons in Cu2O, D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.44.12109

 

2. Carrier thermalization in Cu2O: Phonon emission by excitons, DW Snoke, D Braun, M Cardona, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.44.2991

 

3. Coexistence of Bose-Einstein paraexcitons with Maxwell-Boltzmann orthoexcitons in Cu2O, DW Snoke, JL Lin, JP Wolfe, Physical Review B DOI: https://doi.org/10.1103/PhysRevB.44.2991

 

1990: 

1. Picosecond dynamics of degenerate orthoexcitons in Cu2O, DW Snoke, JP Wolfe, Physical Review B

DOI: https://doi.org/10.1103/PhysRevB.42.7876

 

2. Evidence for Bose-Einstein condensation of excitons in Cu2O, DW Snoke, JP Wolfe, A Mysyrowicz, Physical Review B

DOI: https://doi.org/10.1103/PhysRevB.41.11171

 

3. Evidence for Bose-Einstein condensation of a two-component exciton gas, DW Snoke, JP Wolfe, A Mysyrowicz, Physical Review Letters DOI: https://doi.org/10.1103/PhysRevLett.64.2543

 

4. Progress on Bose‐Einstein Condensation of Excitons, A Mysyrowicz, DW Snoke, JP Wolfe, Physica Status Solidi (b) DOI: https://doi.org/10.1002/pssb.2221590145

 

5. Mechanism of orthoexciton-to-paraexciton conversion in Cu2O, DW Snoke, DP Trauernicht, JP Wolfe, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.41.5266

 

1989:

1. Population dynamics of a Bose gas near saturation, DW Snoke, JP Wolfe, Physical Review B 

DOI: https://doi.org/10.1103/PhysRevB.39.4030

 

2. Time Evolution of the Momentum Distribution of Bose Gas Near Condensation, DW Snoke, JP Wolfe, Momentum Distributions DOI: https://doi.org/10.1007/978-1-4899-2554-1_33

 

1987:

1. Quantum saturation of a Bose gas: Excitons in Cu2O, DW Snoke, JP Wolfe, A Mysyrowicz, Physical Review Letters 

DOI: https://doi.org/10.1103/PhysRevLett.59.827

​G10 Allen Hall, 3941 O'Hara St, Pittsburgh, PA, 15216

​Phone: (412)624-9007; email: snoke@pitt.edu

University of Pittsburgh

Webmaster: Zheng Sun

@2019 University of Pittsburgh